手机端
扫一扫,移动端体验
当前位置: 首页 故事资讯 作文资讯

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全(3)

高中数学知识点总结及公式:圆的公式

1、圆体积=4/3(pi)(r^3)

2、面积=(pi)(r^2)

3、周长=2(pi)r

4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】

5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

高中数学知识点总结及公式:椭圆公式

1、椭圆周长公式:l=2πb+4(a-b)

2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.

3、椭圆面积公式:s=πab

4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

高中数学知识点总结及公式:等差数列

1、等差数列的通项公式为:an=a1+(n-1)d(1)

2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.

3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1

高中数学知识点总结及公式:等比数列

1、等比数列的通项公式是:An=A1*q^(n-1)

2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)

3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.

在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:

①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.

抛物线

1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。

高中数学知识点总结及公式:点、直线和平面的位置关系

公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内。

公理2:过不在同一条直线上的三点,有且只有一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理4:平行于同一条直线的两条直线互相平行。

定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

一、平面的基本性质及应用

1.平面的基本性质

2.等角定理

二、空间两直线的位置关系

1.空间两直线位置关系的分类

2.异面直线所成的角

(1)异面直线所成角的定义

三、空间直线与平面、平面与平面的位置关系

1.直线与平面、平面与平面位置关系的分类

(1)直线和平面位置关系的分类

(2)平面和平面位置关系的分类

两个平面之间的位置关系有且只有以下两种:

(1)两个平面平行——没有公共点;

(2)两个平面相交——有一条公共直线.

3.常用结论

(1)唯一性定理

①过直线外一点有且只有一条直线与已知直线平行.

②过直线外一点有且只有一个平面与已知直线垂直.

③过平面外一点有且只有一个平面与已知平面平行.

④过平面外一点有且只有一条直线与已知平面垂直.

(2)异面直线的判定方法

经过平面内一点的直线与平面内不经过该点的直线互为异面直线.

下一页高中数学知识点总结及公式

高三数学知识点及公式总结大全

高三数学重要知识点精选总结1

1.课程内容:

必修课程由5个模块组成:

必修1:集合、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念等差数列等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学重要知识点精选总结2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则.

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

高三数学重要知识点精选总结3

立体几何初步

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高三数学重要知识点精选总结4

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学重要知识点精选总结5

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8.判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

13.恒成立问题的处理方法

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

(1)、高三数学必考知识点归纳公式大全

(2)、高三女儿数学只考了108分老爸的这一做法绝了

(3)、2019扬州高三模拟统考语文数学试题难度点评

(4)、2019年湖北高三2月联考数学理试题及答案

(5)、高三数学教师教学工作总结

(6)、高三复习班数学班主任工作总结

2021高考数学知识点归纳总结:数学公式大全高中必背(完整版)

高中数学是一门比较占分的科目,有繁多的公式和数值,让很多的同学感到头疼。下面我为大家整理的《高中数学知识点归纳总结及高中数学公式大全(完整版)》,仅供大家参考。

1.集合与函数

内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,

若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,

偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;

其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;

图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;

反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;

函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;

图象第一象限内,函数增减看正负。

2.三角函数

三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;

向下三角平方和,倒数关系是对角,

变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,

保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,

幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,

先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,

简单三角的方程,化为最简求解集;

3.不等式

解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

4.数列

等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,

推论过程须详尽,归纳原理来肯定。

5.复数

虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,

逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

6.排列、组合、二项式定理

加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

7.立体几何

点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

8.平面解析几何

有向线段直线圆,椭圆双曲抛物线,

参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,

两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;

都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,

给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;

平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学

标签: 作文

声明:

1、本文来源于互联网,所有内容仅代表作者本人的观点,与本网站立场无关,作者文责自负。

2、本网站部份内容来自互联网收集整理,对于不当转载或引用而引起的民事纷争、行政处理或其他损失,本网不承担责任。

3、如果有侵权内容、不妥之处,请第一时间联系我们删除,请联系